The N-Acetylmuramic Acid 6-Phosphate Phosphatase MupP Completes the Pseudomonas Peptidoglycan Recycling Pathway Leading to Intrinsic Fosfomycin Resistance
نویسندگان
چکیده
Bacterial cells are encased in and stabilized by a netlike peptidoglycan (PGN) cell wall that undergoes turnover during bacterial growth. PGN turnover fragments are frequently salvaged by the cells via a pathway referred to as PGN recycling. Two different routes for the recycling of the cell wall sugar N-acetylmuramic acid (MurNAc) have been recognized in bacteria. In Escherichia coli and related enterobacteria, as well as in most Gram-positive bacteria, MurNAc is recovered via a catabolic route requiring a MurNAc 6-phosphate etherase (MurQ in E. coli) enzyme. However, many Gram-negative bacteria, including Pseudomonas species, lack a MurQ ortholog and use an alternative, anabolic recycling route that bypasses the de novo biosynthesis of uridyldiphosphate (UDP)-MurNAc, the first committed precursor of PGN. Bacteria featuring the latter pathway become intrinsically resistant to the antibiotic fosfomycin, which targets the de novo biosynthesis of UDP-MurNAc. We report here the identification and characterization of a phosphatase enzyme, named MupP, that had been predicted to complete the anabolic recycling pathway of Pseudomonas species but has remained unknown so far. It belongs to the large haloacid dehalogenase family of phosphatases and specifically converts MurNAc 6-phosphate to MurNAc. A ΔmupP mutant of Pseudomonas putida was highly susceptible to fosfomycin, accumulated large amounts of MurNAc 6-phosphate, and showed lower levels of UDP-MurNAc than wild-type cells, altogether consistent with a role for MupP in the anabolic PGN recycling route and as a determinant of intrinsic resistance to fosfomycin.IMPORTANCE Many Gram-negative bacteria, but not E. coli, make use of a cell wall salvage pathway that contributes to the pool of UDP-MurNAc, the first committed precursor of cell wall synthesis in bacteria. This salvage pathway is of particular interest because it confers intrinsic resistance to the antibiotic fosfomycin, which blocks de novo UDP-MurNAc biosynthesis. Here we identified and characterized a previously missing enzyme within the salvage pathway, the MurNAc 6-phosphate phosphatase MupP of P. putida MupP, together with the other enzymes of the anabolic recycling pathway, AnmK, AmgK, and MurU, yields UDP-MurNAc, renders bacteria intrinsically resistant to fosfomycin, and thus may serve as a novel drug target for antimicrobial therapy.
منابع مشابه
Identification of MupP as a New Peptidoglycan Recycling Factor and Antibiotic Resistance Determinant in Pseudomonas aeruginosa
Peptidoglycan (PG) is an essential cross-linked polymer that surrounds most bacterial cells to prevent osmotic rupture of the cytoplasmic membrane. Its synthesis relies on penicillin-binding proteins, the targets of beta-lactam antibiotics. Many Gram-negative bacteria, including the opportunistic pathogen Pseudomonas aeruginosa, are resistant to beta-lactams because of a chromosomally encoded b...
متن کاملRecycling of the anhydro-N-acetylmuramic acid derived from cell wall murein involves a two-step conversion to N-acetylglucosamine-phosphate.
Escherichia coli breaks down over 60% of the murein of its side wall and reuses the component amino acids to synthesize about 25% of the cell wall for the next generation. The amino sugars of the murein are also efficiently recycled. Here we show that the 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) is returned to the biosynthetic pathway by conversion to N-acetylglucosamine-phosphate (GlcNAc-P...
متن کاملThe N-acetylmuramic acid 6-phosphate etherase gene promotes growth and cell differentiation of cyanobacteria under light-limiting conditions.
Inactivation of sll0861 in Synechocystis sp. strain PCC 6803 or the homologous gene alr2432 in Anabaena sp. strain PCC 7120 had no effect on the growth of these organisms at a light intensity of 30 micromol photons m(-2) s(-1) but reduced their growth at a light intensity of 5 or 10 micromol photons m(-2) s(-1). In Anabaena, inactivation of the gene also significantly reduced the rate of hetero...
متن کاملMuropeptide recycling in Bacillus subtilis:beta-N-acetylglucosaminidase NagZ operates by a unique Asp-His catalytic dyad mechanism
We identified a pathway in the Gram-positive bacterial model organism Bacillus subtilis that is destined for recovery of N-acetylglucosamine-N-acetylmuramic acid-peptides (muroepides) derived from the peptidoglycan of the cell wall. The pathway is encoded by a cluster of six genes of which the first three are orthologs of Escherichia coli genes involved in Nacetylmuramic acid (MurNAc) dissimila...
متن کاملIdentification of a dedicated recycling pathway for anhydro-N-acetylmuramic acid and N-acetylglucosamine derived from Escherichia coli cell wall murein.
Turnover and recycling of the cell wall murein represent a major metabolic pathway of Escherichia coli. It is known that E. coli efficiently reuses, i.e., recycles, its murein tripeptide, L-alanyl-gamma-D-glutamyl-meso-diaminopimelate, to form new murein. However, the question of whether the cells also recycle the amino sugar moieties of cell wall murein has remained unanswered. It is demonstra...
متن کامل